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Higher-order finite-volume methods have been shown to be more efficient than second-
order methods. However, no consensus has been reached on how to eliminate the oscilla-
tions caused by solution discontinuities. Essentially non-oscillatory (ENO) schemes provide
a solution but are computationally expensive to implement and may not converge well for
steady-state problems. This work studies the extension of limiters used for second-order
methods to the higher-order case. Requirements for accuracy and efficient convergence
are discussed. A new limiting procedure is proposed. Ringleb’s flow problem is used to
demonstrate that nearly nominal orders of accuracy for schemes up to fourth-order can
be achieved in smooth regions using the new limiter. Results for the fourth-order accurate
solution of transonic flow demonstrates good convergence properties and significant qual-
itative improvement of the solution relative the second-order method. The new limiter can
also be successfully applied to reduce the dissipation of second-order schemes with min-
imal sacrifices in convergence properties relative to existing approaches.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

High-order discretizations have been shown to reduce computational effort on structured grids [1,2]. High-order finite-
volume methods on unstructured grids, although well known [3–5], have not yet effectively been applied to large scale aero-
dynamics problems. An outstanding issue with these methods is how to deal with discontinuities, such as shocks in the flow,
while maintaining good accuracy and convergence.

One means of dealing with discontinuities is to use the classic MUSCL [6] scheme with the addition of a slope limiter. For
the second-order case, Barth and Jespersen [7] demonstrated the use of limited reconstruction for the solution of the Euler
equations. Efficient convergence to steady state was achieved by Venkatakrishnan [8] by modifying the limiter to be
differentiable.

Third-order accurate schemes using k-exact reconstruction have been demonstrated first by Barth and Frederickson [3]
and subsequently by others [5,9–12, for example]. Transonic and supersonic solutions have been computed in some of these
works by various extensions of second-order limiters. However, the work of Barth [9] presents a limiting approach which
causes difficulties in steady-state convergence, while other works [5,12] present approaches that do not strictly enforce
monotonicity and therefore allow some undesirable oscillations to occur. Furthermore, none of these works formally dem-
onstrate that high-order accuracy is maintained in smooth regions of the flow.

An alternative to MUSCL for obtaining high-order accurate solutions is the essentially non-oscillatory (ENO) scheme [13–
15, for instance]. These methods avoid the need for slope limiters by selecting a smooth flux stencil at each iteration. Due to
. All rights reserved.
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the inherent non-differentiability of this process, convergence of the solution to steady state is not possible. Weighted ENO
(WENO) schemes [16–18, for instance] were introduced in part to resolve this issue. However, these schemes do not con-
verge to steady state as efficiently as MUSCL schemes. The computational cost per residual evaluation is also much higher
than for reconstruction based solvers. A hybrid between WENO and MUSCL schemes named Quasi-ENO [19] has similar lim-
itations. This method’s reconstruction step is much more expensive than traditional MUSCL since the reconstruction least-
squares matrix changes at each iteration. For these reasons ENO-like schemes have not seen widespread application to aero-
dynamics problems.

The present work formulates the requirements and presents a candidate for a limiter that achieves fourth-order accurate
solutions in smooth regions while maintaining monotonicity and good convergence properties. Our primary target is mono-
tone shock capturing in steady, transonic flows. Because we limit each primitive variable independently, our approach is in
principle applicable to slip lines as well, although in practice most unstructured mesh simulations are poorly resolved along
slip lines, rapidly diffusing away this discontinuity. An overview of the high-order MUSCL scheme is given in Section 2. Sec-
ond-order limiters are reviewed in Section 3. Our extension of these methods to high-order schemes is presented in Section
4. Finally, we present results in Section 5 that demonstrate that our method achieves nominal order of accuracy in smooth
regions of the flow while effectively eliminating oscillations at shocks and maintaining good convergence properties.
2. High-order accurate solution reconstruction

The third- and fourth-order accurate reconstruction procedure we use here is documented by Ollivier-Gooch and Van
Altena [20] and is briefly reviewed in this section. Only the equations that are needed for the discussion of limiters are
presented.

In the finite-volume method, the domain is tessellated into non-overlapping control volumes. Each control volume Vi has
a geometric reference point~xi. While in principle any point can be chosen as the reference point, the usual choices (which we
recommend) are the cell centroid for cell-centered control volumes and the vertex for vertex-centered control volumes. For
any smooth function Uð~xÞ and its control volume averaged values Ui, the k-exact least-squares reconstruction will use a com-
pact stencil in the neighborhood of control volume i to compute an expansion UR

i ð~x�~xiÞ that conserves the mean in control
volume i and reconstructs exactly polynomials of degree 6 k (equivalently, UR

i ð~x�~xiÞ � Uð~xÞ ¼ OðDxkþ1Þ).
Conservation of the mean requires that the average of the reconstructed function UR

i and the original function U over con-
trol volume i be the same:
Ui �
1
Vi

Z
Vi

UR
i ð~x�~xiÞdA ¼ 1

Vi

Z
Vi

Uð~xÞdA ð1Þ
The expansion UR
i ð~x�~xiÞ can be written as:
UR
i ð~x�~xiÞ ¼ Uj~xi
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Taking the control volume average of this expansion over control volume i and equating it to the mean value gives
Ui ¼ Uj~xi
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xnym
i �
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Ai
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ðx� xiÞnðy� yiÞ
mdA: ð4Þ
are control volume moments. This condition, which must be satisfied exactly, is combined with the reconstruction goal of
approximating nearby control volume averages to obtain a constrained least-squares problem for the solution of the Taylor
series expansion coefficients. Since the resulting least-squares matrix depends only on geometric terms, its pseudoinverse
may be found in a preprocessing step. Therefore the reconstruction step at each flux evaluation is reduced to a matrix–vector
product and the exact flux Jacobian can be computed as described in our other work [21]. Ollivier-Gooch [19] presents a
modification to the reconstruction procedure resulting in a quasi-ENO scheme. This scheme eliminates the requirement
for a limiter by varying the weights of the rows in the least-squares matrix at each iterations based on a measure of smooth-
ness. However, since the pseudoinverse can no longer be precomputed, this scheme is computationally expensive.
3. Second-order limiting

To avoid introducing oscillation in the solution process, no new local extrema must be formed during reconstruction.
Barth and Jespersen [7] introduced the first limiter for unstructured grids. The scheme consists of finding a limiter value
Ui for each primitive flow variable in each control volume that will limit the gradient in the piecewise-linear reconstruction
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of the solution. In the second-order reconstruction case, if the reference location~xi is taken to be the control volume centroid,
the point-wise value Uj~xi

is equal to the control volume average Ui. This leads to the limited reconstruction of the form
UR
i ð~x�~xi;UiÞ ¼ Ui þUi 5 Ui � ð~x�~xiÞ; U 2 ½0;1�
The goal is to find the largest Ui which prevents the formation of local extrema at the flux integration Gauss points. The fol-
lowing procedure is used by Barth and Jespersen:

1. Find the largest negative dUmin
i ¼minðUj � UiÞ

� �
and positive dUmax

i ¼maxðUj � UiÞ
� �

difference between the solution in
the immediate neighbors j and the current control volume i.

2. Compute the unconstrained reconstructed value at each Gauss point Uik ¼ UR
i ð~xk �~xiÞ

� �
.

3. Compute a maximum allowable value of Uik for each Gauss point k.
Uik ¼

min 1; dUmax
i

Uik�Ui

� �
; if Uik � Ui > 0

min 1; dUmin
i

Uik�Ui

� �
; if Uik � Ui < 0

1; if Uik � Ui ¼ 0

8>>><>>>:

4. Select Ui ¼minðUikÞ .
5. Compute the limited reconstruction UR

i ð~x�~xi;UiÞ at flux Gauss integration points.

Clearly, steps 1, 3, and 4 introduce non-differentiability in the computation of the reconstructed function. Consequently,
the second-order flux is also non-differentiable. This has a severe adverse effect on the convergence properties of the solver.
This is particularly evident for implicit schemes, but even explicit time advance schemes are unable to obtain more than two
or three orders of magnitude in residual reduction.

In practice, the non-differentiability of step 3 causes the greatest degradation in convergence performance. For this rea-
son, Venkatakrishnan [8] introduces a smooth alternative to step 3 of the Barth–Jespersen procedure by replacing the func-
tion minð1; yÞ with
/ðyÞ ¼ y2 þ 2y
y2 þ yþ 2

ð5Þ
The effect of this modification can be seen in Fig. 1. This function is differentiable and is entirely contained within the mono-
tonicity bounds derived by Sweby [22] for TVD schemes. Furthermore by satisfying the condition /ð2Þ ¼ 1 this limiter can be
shown to preserve second-order accuracy in regions where no extrema exist for perfectly uniform meshes. Specifically, for
smooth solutions on a uniform mesh, the Gauss point is expected to be located at the midpoint connecting two control vol-
ume centroids. Therefore for any smooth function dUmax

i

Uik�Ui
is expected to be 2� Oðxi � xikÞ, and /ðyÞ is therefore expected to be

1� Oðxi � xikÞ. Hence, modifying the gradient in this manner for second-order solutions introduces an error in the recon-
struction which is on the order of truncation for smooth flows on uniform grids. However, for general unstructured grids
the Gauss point can be located at a distance Oðxi � xikÞ away from the midpoint between centroids. Therefore, as will be seen
in the results, this limiter leads to accuracy loss relative to the unlimited scheme.

A further modification introduced by Venkatakrishnan is a method to avoid applying the limiter in regions of nearly uni-
form flow and smooth extrema. In these regions we expect the solution to vary such that Uik � Ui ¼ OðDx2Þ where Dx is the
characteristic length of the control volume i. Therefore if the effect of the limiter can be eliminated when Uik � Ui 6 ðKDxÞ1:5,
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Fig. 1. Venkatakrishnan’s smooth approximation to minð1; yÞ.
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where K is a tunable parameter, accuracy near smooth extrema can be improved without compromising monotonicity
enforcement in other regions.

Venkatakrishnan uses a method inspired by van Albada [23] to make the switch between limited and unlimited regions of
flow using a differentiable function so that convergence properties are not adversely affected. For the case Uik � Ui > 0 the
limiter becomes
/ik ¼
1
D�

D2
þ þ �2

� �
D� þ 2D2

�Dþ

D2
þ þ 2D2

� þ D�Dþ þ �2

24 35 ð6Þ
In this equation D� ¼ Uik � Ui;Dþ ¼ dUmax
i and �2 ¼ ðKDxÞ3. In addition to improving accuracy this modification is known to

be critical to achieving good convergence. When the solution is perturbed in nearly uniform regions or near smooth extrema
the results of steps 1 and 4 of the limiting procedure can be expected to change more frequently than in non-uniform re-
gions. Therefore the non-differentiability of these steps is a much greater hindrance to convergence in uniform regions than
in non-uniform regions. By effectively disabling the limiter in uniform regions, the addition of the � term in Eq. (6) greatly
improves convergence. The choice of the parameter K is a compromise. Large values of K are favorable to accuracy in smooth
regions and good convergence. However, since for any K > 0 the limiter no longer strictly enforces monotonicity, large values
of K can lead to significant overshoots near discontinuities in the solution.

4. High-order limiting

Our high-order limiting scheme follows the same basic outline as traditional second-order limiters. That is, we use Gauss
point solution values computed using an unlimited reconstruction to determine whether limiting if necessary. Strictly speak-
ing, this is a necessary but not sufficient condition for monotonicity: higher-order reconstructions admit local extrema with-
in control volumes. One obvious scenario in which the solution would have an extremum within a control volume is the case
of a smooth extremum; in this case, we prefer not to limit in order to preserve accuracy, so the fact that our current scheme
fails to limit here is an advantage. Near discontinuities, we rely on Gauss point values for practical monotonicity enforce-
ment, on the basis that these are the only values the solver subsequently uses. To improve monotonicity enforcement within
control volumes, one could check for monotonicity also at Gauss points for integration over the control volume or even solve
the system of equations required to find the extrema of the reconstruction. In the latter case, attention would have to be paid
in the implementation to efficiently eliminate cases where the extrema of the reconstruction fall far from the control volume.

4.1. Monotonicity

The first challenge of extending the limiting procedure to third- and fourth-order accurate schemes is to express the
monotonicity requirement including the high-order reconstruction terms. In second-order schemes the assumption that
the solution at the reference point is equal to the control volume average is often made. For cell-centered schemes, where
the reference point is the centroid, this assumption is correct. For vertex-centered scheme, the reference point is usually cho-
sen as the vertex location, therefore the assumption is not strictly correct. However, for third- and higher-order schemes the
control volume average solution is in general not equal to the centroidal value of the reconstruction. Therefore, when devis-
ing a limiter for these schemes, making the distinction between control volume average values and reference-point values
becomes critical for maintaining high-order accuracy. With this in mind, the reconstruction polynomial in Eq. (2) can be
rewritten in terms of the control volume average with the help of Eq. (3) to yield:
UR
i ð~x�~xiÞ ¼ Ui þ
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� ����
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ððx� xiÞ � �xiÞ þ
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þ � � �

!
ð7Þ
This can be interpreted as meaning that the reconstructed solution at any point is the control volume average plus second
and high-order contributions from the reconstruction:
UR
i ð~x�~xiÞ ¼ Ui þ Sð~x�~xiÞ þ Hð~x�~xiÞ
where Hð~x�~xiÞ contains only quadratic terms for third-order reconstruction, and both quadratic and cubic terms for fourth-
order reconstruction. Analogous to the second-order case, no new extrema will be formed if
dUmin
i 6 Sð~x�~xiÞ þ Hð~x�~xiÞ 6 dUmax

i

As in the work of Barth [9], the limited form of the high-order accurate reconstruction can be expressed as
UR
i ð~x�~xi;UiÞ ¼ Ui þUiðSð~x�~xiÞ þ Hið~x�~xiÞÞ ð8Þ
Given this formulation, the same limiting procedure used in Section 3 can be applied to the high-order reconstruction.
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Some previous works [5,12] have suggested a formulation where the limiter value multiplies only the second-order terms
while the high-order terms are ‘‘switched off” when discontinuities are detected. This formulation has the form of
UR
i ð~x�~xi;Ui;riÞ ¼ Ui þ ðUið1� riÞ þ riÞSð~x�~xiÞ þ riHð~x�~xiÞ
where ri, the discontinuity detector, is zero near discontinuities and one in smooth regions of the flow. However, this ap-
proach may violate the monotonicity requirement as the high-order terms may have contributed to reducing the overshoot
in the unlimited reconstruction used in determining the value of Ui. Therefore, the value of Ui computed may be insufficient
to reduce the slope such that overshoots occur when the high-order reconstruction terms are disabled. The additional
parameters introduced in a smooth switching function for ri can be considered a further disadvantage.

4.2. Accuracy

As previously mentioned, on uniform grids a limiter for the second-order scheme maintains nominal accuracy as long as
j/� 1j 6 OðDxÞ since this results in an error that is on the order of the quadratic term in the Taylor expansion. However,
when a third- or fourth-order scheme is used, the limiter must satisfy j/� 1j 6 OðDx2Þ or j/� 1j 6 OðDx3Þ, respectively,
for the effect of the limiter in smooth regions to be on the order of truncation error.

For this reason, Venkatakrishnan’s limiter will not provide sufficient accuracy even in smooth regions without any local
extrema. While the Barth–Jespersen limiter does satisfy these conditions, the lack of differentiability will make achieving a
steady-state solution difficult. Therefore, we seek a new approximation for minð1; yÞ used in step 3 of the limiting procedure,
which we will call gminð1; yÞ. Like Venkatakrishnan’s function, given in Eq. (5), we require that it be differentiable at all points
and that it be entirely contained under the function minð1; yÞ. However, unlike Eq. (5), we also require this new limiting
function to have a value of exactly 1 for a range of values y P yt , where 1 < yt < 2 represents a threshold value. For this func-
tion, we propose the form
gminð1; yÞ ¼
PðyÞ y < yt

1 y P yt

	

where PðyÞ is a polynomial satisfying
Pj0 ¼ 0 Pjyt
¼ 1

dP
dy

���
0
¼ 1 dP

dy

���
yt

¼ 0

PðyÞ 6minð1; yÞ; y 2 ½0; yt �
The resulting cubic polynomials for yt ¼ 1:5;1:75 are plotted in Fig. 2. This function allows the preservation of high-order
accuracy on uniform grids by satisfying jgminð1; yÞ � 1j 6 OðDx3Þ. Additionally, this function is also effective in maintaining
high-order accuracy in regions of mild mesh non-uniformity. The degree of non-uniformity that can be accommodated is
dictated by the choice of the threshold value yt . Smaller values of yt are less likely to unduly activate the limiter on non-uni-
form meshes but result in a limiter that approaches non-differentiability. Therefore the choice of yt is a compromise between
maintaining good accuracy on non-uniform grids and maintaining good convergence properties. For the results presented in
this work, we use yt ¼ 1:5 which yields the following cubic polynomial
PðyÞ ¼ � 4
27

y3 þ y
 0
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Fig. 2. gminð1; yÞ with yt ¼ 1:5 and yt ¼ 1:75 compared to minð1; yÞ.
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4.3. Uniform regions and smooth extrema

For the reasons already mentioned in Section 3, it is desirable to eliminate the effect of the limiter in regions of uniform
flow or near smooth extrema. To maintain high-order accuracy it is essential to permit monotonicity to be violated near
smooth extrema. Furthermore the limiter value changes rapidly and is non-differentiable in uniform regions which prevents
good convergence of the solver. Therefore, analogous to the second-order limiter of Venkatakrishnan, we wish to eliminate
the effect of the limiter when the local solution variation is OðDx2Þ or smaller. Specifically, we propose to disable the limiter
when
dU � ðdUmax
i � dUmin

i Þ < ðKDxÞ
3
2

where K is a tunable parameter. However, using a simple switch would introduce a non-differentiable step in the residual
evaluation which would cause convergence problems. Therefore, to maintain differentiability, the following procedure is
proposed:
eUi ¼ eri þ ð1� eriÞUi ð9Þ
where Ui is the limiter value as calculated in step 4 of the procedure in Section 3 and ~ri is the following function:
~ri ¼
1 dU2

6 ðKDxÞ3

s dU2�ðKDxÞ3

ðKDxÞ3

� �
ðKDxÞ3 < dU2 < 2ðKDxÞ3

0 dU2 P 2ðKDxÞ3

8>><>>: ð10Þ
where the transition function s is defined by
sðyÞ ¼ 2y3 � 3y2 þ 1 ð11Þ
and is plotted in Fig. 3. The limited reconstruction is then computed for each Gauss point by evaluating UR
i ð~x�~xi; eUiÞ.

Although this two stage limiting procedure is somewhat more computationally expensive than Venkatakrishnan’s limiter
in the general case, some ‘‘short circuiting” is possible in uniform regions of flow. Since ~ri depends only on neighboring con-
trol volume averages, unlike Ui which also depends on an evaluation of the unconstrained reconstruction at each Gauss
point, it is relatively inexpensive to compute. When ~ri evaluates to 1, computational effort can be saved by not computing
Ui since it does not affect the value of the final limiter eUi.

We emphasize that, although the threshold below which we consider the solution to be flat—and therefore choose not to
limit—has the same form as the parameter in Venkatakrishnan’s limiter that addresses the same issue, the two approaches
differ significantly in their action. Venkatakrishnan’s �2 term modifies the limiter value for all cases, and increasing the value
of K allows a progressively larger overshoot in the solution at shocks. In our case, near shocks the transition function is ex-
actly one, and the basic limiter enforces monotonicity regardless of the value of K. As we will show in Section 5.2.4, our
scheme is less sensitive than Venkatakrishnan’s to the choice of K.
4.4. Boundary treatment

Maintaining high-order accuracy near domain boundaries represents a special challenge. Local extrema are expected to
exist on the boundary for smooth flows. Unlike smooth extrema in the interior of the domain, these points are not
 0
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Fig. 3. Transition function sðyÞ ¼ 2y3 � 3y2 þ 1 used to smoothly disable the limiter in nearly uniform regions.
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characterized by a zero first derivative of flow property with respect to space. Therefore, the method used in Section 4.3 will
not be effective in disabling the limiter in these regions.

As a first measure, in our implementation of both Venkatakrishnan and the new limiter we elect to only iterate over inte-
rior face Gauss points in step 3 of the limiting procedure. Therefore an extremum forming on a boundary Gauss point will not
cause the limiter to activate. In our experience this does not cause any oscillatory issues at shocks. However, the Gauss points
on interior faces of boundary control volumes will often also have reconstructed values of smooth solutions that form an
extremum relative to the control volume averages of the solution in the reconstruction stencil. In some cases even Gauss
points of control volumes adjacent to boundary control volumes will exhibit this behavior. In our experience eliminating
all of these Gauss points from step 3 of the limiting procedure causes unacceptable oscillations in the solution near shocks.
Therefore, to maintain high-order accuracy near boundaries while maintaining solution monotonicity another approach is
needed.

Thus far the proposed limiting procedure is entirely physics agnostic. However, we have been unable to find a satisfactory
means of dealing with the issue of accuracy and monotonicity of boundary and near-boundary control volumes in this man-
ner. Therefore we propose a method specific to the Euler equations.

For external and many internal flows the far-field boundary usually has nearly uniform flow conditions. For these bound-
aries the limiter is effectively disabled by the method applied in Section 4.3. Therefore we will focus our attention on the wall
boundary. Two flow conditions can be present at a wall boundary condition: the flow can be tangential to the wall, or it can
be a stagnation point. We propose methods for maintaining high-order accuracy in both cases.
4.4.1. Tangential flow
For every wall boundary control volume we will consider a ‘‘ghost” control volume which is a mirror image of the bound-

ary control volume about the boundary. It will have an approximate control volume average value of the solution assigned to
it consistent with a shockless flow. These values will be used to expand the stencil used to determine monotonicity outside
of the flow domain. This will effectively make the near-boundary reconstructed Gauss point values no longer extrema for
smooth flows. To preserve high-order accuracy, these ghost control volume values will not be used in the least-squares
reconstruction process. They will only be used when determining the values of dUmin and dUmax in the limiting procedure.
For any control volume that includes the boundary control volume as its first neighbor the respective mirror control volume
will also be included in determining dUmin and dUmax.

To determine an appropriate solution value for the mirror control volume we begin by noting that any well resolved
curved boundary locally resembles a circular arc. We approximate the radius of curvature from the boundary Gauss point
normals of the curved boundary edges. Since this information is needed by the high-order boundary flux integration scheme,
it is readily available. Next, we apply the steady momentum equation in the direction normal to the streamline
@P
@n
¼ �qV2

R

where n is the direction normal to the wall, q is density, V is velocity and R the radius of curvature. Since the ghost value is
only used in computing the limiter, a first-order approximation is sufficient. We can therefore approximate the ghost value
of pressure by
Pgi ¼ Pi � 2d �
�qiV2

i

R
ð12Þ
where Pi; �qi, and Vi are the control volume pressure, density and velocity, respectively, and d is the distance of the control
volume centroid from the wall in the convex direction (d is negative for concave boundaries). The ghost values of Mach num-
ber and density can be obtained by considering the isentropic transformation from the control volume state to the ghost va-
lue state with a pressure of Pgi
�qgi ¼ �qi
Pgi

Pi

 !1
c

M2
gi ¼

2
c� 1

Pti

Pgi

 !c�1
c

� 1

0@ 1A

where Mgi is the Mach number in the ghost control volume and Pti

is the total pressure as calculated using the boundary
control volume average flow properties. This, together with the assumption that the flow direction remains tangential to
the surface, fully establishes the state of the ghost control volume.
4.4.2. Stagnation point
Additional steps need to be taken to prevent the application of the limiter at stagnation points. Although affecting a very

small fraction of control volumes, obtaining high-order accuracy near stagnation points can be critical to global accuracy.
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In practical aerodynamics problems, the flow discontinuity which requires the proper application of the limiter is the
shock. Since supersonic flow is required to produce a shock, and stagnation points are necessarily in subsonic regions, it
is possible to simply disable the limiter in the latter areas. Specifically, we propose that the reconstruction of a control vol-
ume can only be adversely affected by a shock if at least one of the control volumes in its reconstruction stencil contains
supersonic flow. Practically, we wish to smoothly disable the limiter as the highest control volume average Mach number
in the reconstruction stencil is reduced. For this purpose we can reuse the approach of Section 4.3. Specifically, the limiter
value is once again modified such that
bUi ¼ r̂i þ ð1� r̂iÞeUi; ð13Þ
where eUi is the limiter value after applying the uniform-flow fix in Eq. (9) and
r̂i ¼

1 Mi;max 6 M1

s Mi;max�M1
M2�M1

� �
M1 < Mi;max < M2

0 Mi;max P M2

8>><>>: ð14Þ
where Mi;max is the maximum Mach number of the control volume averages of the reconstruction stencil of control volume i,
and s is the function in Eq. (11). The parameters M1 and M2 define the Mach numbers at which the effect of the limiter is fully
disabled and fully enabled, respectively. In the present work we use M1 ¼ 0:8 and M2 ¼ 0:85; lower values would be bene-
ficial for sharper resolution of a slip line in transonic flow. The new limited reconstruction used by the flux integration
scheme becomes UR

i ð~x�~xi; bUiÞ. For typical aerodynamic flows there is no harm in applying this step to all control volumes,
even if they are not near boundaries. Doing so can reduce computational effort since eUi does not need to be evaluated if r̂i

evaluates to 1.

4.5. Complete algorithm

The complete algorithm is, in the general case, more complex and costly than the second-order limiting procedure pre-
sented in Section 3. However, the various additions can, in some cases, be used to ‘‘short circuit” the evaluation of the limiter,
therefore reducing computational effort. The complete algorithm for applying the limiter to the reconstruction for each flow
property of each control volume is

1. Find the maximum Mach number of the reconstruction neighbors control volume averages of the solution and evaluate r̂i

using Eq. (14). If r̂i ¼ 1 then bUi ¼ 1 and the algorithm jumps to step 9.
2. Find the largest negative dUmin

i ¼minðUj � UiÞ
� �

and positive dUmax
i ¼maxðUj � UjÞ

� �
difference between the solution in

the immediate neighbors j and the current control volume i. If the control volume or any of its immediate neighbors are
adjacent to a wall boundary include their ghost values using Eq. (12) and isentropic relations.

3. Compute ~ri using Eq. (10). If ~ri ¼ 1 then bUi ¼ eUi ¼ 1 and the algorithm jumps to step 9.
4. Compute the unconstrained reconstructed value at each Gauss point Uik ¼ UR

i ð~xk �~xiÞ
� �

.

Fig. 4. Two coarsest meshes used for Ringleb’s flow test case.
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5. Compute a maximum allowable value of /ik for each Gauss point k.
Fig. 5.
numbe
/ik ¼

gmin 1; dUmax
i

Uik�Ui

� �
; if Uik � Ui > 0gmin 1; dUmin

i

Uik�Ui

� �
; if Uik � Ui < 0

1; if Uik � Ui ¼ 0

8>>><>>>:

6. Select Ui ¼minð/ikÞ .
7. Compute eUi using Eq. (9).
8. Compute bUi using Eq. (13).
9. Compute the limited reconstruction UR

i ð~x�~xi; bUiÞ at flux Gauss integration points using Eq. (8).
5. Results

The presented results were obtained using a Newton-GMRES [24] vertex-centered finite-volume solver. The solution pro-
cess consists of two stages. In the preiteration stage the linear system resulting from a local timestepping is solved at each
Mach number contours from numerical solution of Ringleb’s flow on 1426 control volume mesh. Each subfigure also shows line contours of Mach
r for the fourth-order discretization with the new limiter for comparison.
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iteration. The Jacobian from the first-order accurate scheme is used on the left-hand side and the full-order accurate flux is
used on the right-hand side. At each Newton iteration, the linear system is approximately solved using incomplete-lower-
upper factorization (ILU) preconditioned GMRES. During the second stage, the left-hand side is replaced with the full-order
accurate Jacobian [21].

In addition to results using the new limiter, results are also presented for the high-order scheme using the procedure in
Section 4.1 but with Venkatakrishnan’s limiting function. For Venkatakrishnan’s function we use a tuning parameter of K ¼ 2
and for the new limiter we use K ¼ 1.

5.1. Ringleb’s flow

We begin by considering Ringleb’s flow which is transonic but shockless and has a known exact solution. This will enable
us to quantify the negative effects of Venkatakrishnan’s limiter and the new limiter on the accuracy of the solution in smooth
regions of flow. We consider four meshes consisting of 369, 1426, 5467 and 20,690 control volumes. The two coarsest
meshes are shown in Fig. 4.
Fig. 6. Limiter value for pressure for the fourth-order converged solution on the 5467 control volume mesh. Only values U – 1 are plotted.
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The exact solution to Ringleb’s flow is given by the streamlines defined by:
x ¼ 1
2

1
q

1
q2 �

2

k2

� �
þ J

2

y ¼ � 1
kqq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q

k

� �2
r

where k is constant along streamlines and
q ¼ j~V j

J ¼ 1
c
þ 1

3c3 þ
1

5c5 �
1
2

ln
1þ c
1� c

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c� 1

2
q2

r
q ¼ c2=ðc�1Þ
Fig. 7. Difference in dimensionless entropy from the freestream value for Ringleb’s flow.
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The computational domain is constructed using solid walls at the streamlines for k ¼ 0:55; 1:2 and placing the inlet and out-
let at q ¼ 0:5. This results in a geometry that is symmetric about the horizontal axis. The flow is subsonic at the inlet and
outlet but is supersonic near the inside wall of the throat. Using this domain, rather than just the upper half, is a more strin-
gent test of the accuracy of the computational scheme since errors produced at the throat are allowed to propagate to the
lower half of the domain.
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Since this test case contains no stagnation points, the Mach number dependent deactivation of the limiter should not be
necessary. For this reason, and to make the test as stringent as possible, we do not apply steps 1 and 8 of the high-order
limiting procedure as presented in Section 4.5.

As an initial qualitative assessment, we compare the Mach number contours generated on the 1426 control volume mesh
using Venkatakrishnan’s limiter and the new limiter in Fig. 5. Each subfigure shows the Mach number distribution for the
scheme identified in its caption, with line contours for the new limiter with the fourth-order scheme added to highlight dif-
ferences between schemes. The additional dissipation of the Venkatakrishnan limited solutions is evident in the reduced
Mach number at the inner wall near the outflow. Using the same criterion we can visually detect a slight superiority of
the fourth-order scheme over the second-order scheme when using the new limiter. The Venkatakrishnan limited procedure,
on the other hand, does not benefit from the use of the high-order accurate reconstruction.

Next we examine the value of the limiter value U for the pressure component at steady state for the fourth-order solution
on the 5467 control volume mesh using the two limiting schemes in Fig. 6. In addition to Venkatakrishnan’s limiter and the
new limiter, we also consider the new limiter without the special boundary ghost value treatment introduced in steps 3 and
7 of the high-order limiting procedure. The new limiter successfully avoids limiting in almost all control volumes; the frac-
tion of control volumes where the limiter is active remains about the same with mesh refinement. All the control volumes
that are limited have values U P 0:99, although this bound becomes somewhat lower with mesh refinement. Without the
boundary ghost treatment significant limiting occurs near the inner wall boundary. Venkatakrishnan’s limiter, on the other
hand, applies some limiting to virtually all control volumes.

Next, in Fig. 7, entropy is plotted for the second- and fourth-order schemes on the second-finest grid. The new limiter
causes no distinguishable additional entropy production relative to the unlimited scheme for the second-order method,
and a very slight increase for the fourth-order method. On the other hand, Venkatakrishnan’s limiter increases entropy by
Table 1
Convergence order of norms of error in pressure for Ringleb’s flow computed using regression fit of all mesh results.

Nominal order Limiter L1 norm L2 norm L1 norm

1st None 1.24 1.24 0.99

2nd None 2.22 1.96 1.24
2nd Venkatakrishnan 1.10 1.07 0.47
2nd New w/o Ghosts 1.71 1.23 0.47
2nd New 2.22 1.96 1.24

3rd None 3.18 3.12 2.70
3rd Venkatakrishnan 1.14 1.10 0.51
3rd New w/o Ghosts 1.83 1.43 0.59
3rd New 3.14 3.08 2.40

4th None 4.07 3.74 3.06
4th Venkatakrishnan 0.62 0.62 0.12
4th New w/o Ghosts 1.07 0.74 0.23
4th New 3.24 3.11 2.08

Fig. 9. Mesh consisting of 4656 control volumes used for the NACA 0012 test case.
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approximately an order of magnitude for the second-order scheme and two to four orders for the fourth-order scheme. Once
again we note that when applying Venkatakrishnan’s limiter there is no apparent benefit to using the fourth-order scheme
over the second-order scheme.

The L2 norm of error of the converged solution compared to the known exact solution is used to generate Fig. 8. The grid-
convergence orders of the error norms using a regression fit of the results from all grids are given in Table 1. We begin by
noting that the unlimited schemes attain their nominal orders of accuracy in L1 and L2 norms and one order accuracy less
than nominal for the L1 norm. Although the error of second-, third-, and fourth-order schemes using Venkatakrishnan’s lim-
iter is lower than that of the first-order scheme, the error does not converge with nominal accuracy. In fact the grid conver-
gence of the error when using Venkatakrishnan’s limiter is only first-order. The results using the new limiter without the
boundary ghost value treatment outperform Venkatakrishnan’s limiter only slightly. This indicates that the application of
the limiter in even an isolated region has severe implications for global accuracy. The new limiter with boundary ghost val-
ues, on the other hand, allows for the second- and third-order schemes to perform virtually identically to the unlimited case
and has an adverse effect on the accuracy of the fourth-order scheme only on the finest mesh. The problem here is that, on
realistic unstructured meshes, mesh irregularities can induce limiter activity in smooth regions of the flow. To leading order,
this alters the reconstructed solution values used in flux integration by Oðjrujð1� /ÞhÞ, whereru is the gradient of the solu-
tion and h is the characteristic size of the control volume. For coarse meshes and lower orders of accuracy, the impact of
Fig. 10. Difference in dimensionless entropy from the freestream value for Mach 0.8, a ¼ 1:25� flow around a NACA 0012 airfoil.



C. Michalak, C. Ollivier-Gooch / Journal of Computational Physics 228 (2009) 8693–8711 8707
these inadvertent limiter firings is lost in the larger discretization error. However, for fourth-order and fine meshes, the dis-
cretization error is low enough that this effect comes to dominate the error. While clearly undesirable, this limiter error is
still quite small compared with the analogous error introduced by Venkatakrishnan’s limiter.
5.2. Transonic flow over an airfoil

Next, we present results for transonic flow over a NACA 0012 airfoil at Mach 0.8 and an angle of attack of 1.25�. The com-
putational mesh consists of 4656 control volumes and is shown in Fig. 9. We will consider second- and fourth-order schemes
using Venkatakrishnan’s limiter, the new limiter, and the new limiter without the stagnation region fix which disables the
limiter at low Mach number in steps 1 and 8 of the high-order limiting procedure.
5.2.1. Accuracy
We begin by assessing the quality of the solution upstream of the shock. Entropy near the leading edge of the airfoil is

plotted in Fig. 10. The fourth-order solution with Venkatakrishnan’s limiter once again fails to outperform its second-order
counterpart. The new limiter produces approximately an order of magnitude less entropy than Venkatakrishnan’s limiter for
the second-order scheme. The new limiter applied to the fourth-order scheme results in even less entropy production. Dis-
abling the stagnation region fix results in a modest increase in entropy production.

The quality of the solutions can also be compared by examining the stagnation pressure ratio along the upper surface of
the airfoil shown in Fig. 11. The decrease in total pressure across the shock is comparable for all schemes. However, the
schemes limited with the Venkatakrishnan limiter result in substantial stagnation pressure loss upstream of the shock.
For the second-order scheme the stagnation region fix has little effect while for the fourth-order scheme applying this step
in the limiting procedure results in a further improvement in the conservation of total pressure.
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Fig. 11. Decrease in total pressure along the upper surface of the NACA 0012 airfoil at Mach 0.8 a ¼ 1:25.
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5.2.2. Shock monotonicity
The performance of the new limiter in controlling oscillations and overshoots in the solution near the strong shock on the

upper surface of the airfoil is demonstrated in the pressure plot of Fig. 12. The new limiter and Venkatakrishnan’s limiter are
both effective in eliminating any substantial oscillations near the shock. The pressure computed on the upper surface of the
airfoil using the different limiters is virtually indistinguishable. Once again the lower dissipation of the new limiter is dem-
onstrated by the sharper profile of the weak shock on the lower surface of the airfoil.
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Fig. 12. Surface pressure profiles for transonic flow over a NACA0012 airfoil.
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5.2.3. Convergence
Next, we consider the residual convergence properties of the new limiting scheme coupled with our Newton-GMRES sol-

ver. Fig. 13 shows the convergence of the scheme with the new limiter relative to Venkatakrishnan’s limiter for second and
fourth-order accurate schemes. We have also provided the computational time required for convergence in Table 2.

The scheme with the new limiter exhibits a slightly poorer convergence rate than Venkatakrishnan’s limiter. This is likely
due to the lower dissipation of the scheme which results in poorer conditioning of the nonlinear system of equations. Sim-
ilarly, we find that the fourth-order scheme requires slightly more iterations to converge than the second-order scheme.
5.2.4. Sensitivity to tuning parameter
Venkatakrishnan’s limiter and the new limiter both require a tuning parameter K to detect regions of uniform flow.

Ideally the solutions produced by the schemes should be relatively insensitive to the choice of this parameter. Therefore we
consider the effect of increasing and decreasing the parameter by a factor of 4 from the original choice. For Venkatakrishnan’s
scheme we consider K ¼ 0:5; 2; 8 and for the new limiter we consider K ¼ 0:25; 1; 4. In Fig. 14 we examine the behavior of
Table 2
Computational time for transonic airfoil test case.

Order Limiter Computational time (s)

2nd Venkatakrishnan 37
2nd New 40
4th Venkatakrishnan 84
4th New 99
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Fig. 14. Surface pressure profile close-ups at the upper surface shock for transonic flow over a NACA0012 airfoil using fourth-order scheme.
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Fig. 15. Sensitivity of total pressure along the upper surface of the NACA 0012 airfoil to the choice of limiter tuning parameter.

8710 C. Michalak, C. Ollivier-Gooch / Journal of Computational Physics 228 (2009) 8693–8711
pressure on the upper surface of the airfoil just upstream of the shock using the fourth-order scheme. The solution using Venk-
atakrishnan’s limiter exhibits a strong sensitivity to the value of the parameter. Specifically, K ¼ 0:5 results in a lower peak
pressure ahead of the shock, while K ¼ 8 results in significant oscillations. The result using the new limiter shows less sensi-
tivity. Specifically, the results using K ¼ 0:25 are virtually indistinguishable from those with K ¼ 1 while the results with K ¼ 4
result in some oscillation.

To further examine the effect of this parameter on the dissipation of the scheme, the stagnation pressure along the upper
surface of the airfoil is shown in Fig. 15. For Venkatakrishnan’s scheme the value of the tuning parameter has little effect on
the total pressure loss near the leading edge of airfoil. However, the stagnation pressure loss across the shock exhibits a
strong dependence on this parameter. The new limiter exhibits almost no sensitivity to the parameter ahead of the shock.
Downstream of the shock the results using parameters K ¼ 0:25 and K ¼ 1 are indistinguishable while the stagnation pres-
sure with K ¼ 4 is higher.

6. Conclusion

A new unstructured grid limiter broadly based on the framework introduced by the Barth and Jespersen limiter has been
developed specifically for high-order schemes. Like the Venkatakrishnan limiter, it is designed to be differentiable to enable
good convergence to steady state by implicit schemes. To achieve this and to maintain high-order accuracy, a new function
defining the relation between the limiter value and the unlimited reconstruction at Gauss points has been constructed. To
preserve accuracy at smooth extrema, a smooth switch disables the limiter in regions of nearly uniform flow. To avoid lim-
iting regions of smooth flow near boundaries, the range defining monotonicity is carefully expanded based on a constant
momentum extrapolation of conditions beyond the boundary. Application of the limiter is avoided at stagnation points
by smoothly disabling it in regions of low Mach number.
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The results indicate that the new limiter is effective in maintaining high-order accuracy in smooth flows while effectively
suppressing oscillations near shocks. Additionally, the new scheme is also relatively insensitive to tuning parameters which
should lead to robustness and reproducibility of solutions. Although the greatest gains in accuracy are seen when using a
high-order scheme, the new limiter is also effective in reducing the dissipation and increasing the accuracy of second-order
schemes relative to the currently most widely used limiter. Since only minor modifications to the reconstruction procedure
are needed, the addition of the new method to existing solvers should be relatively straightforward.

Our approach could be improved in at least two ways. First, we would strongly prefer to eliminate all limiter activity
when the solution is smooth, regardless of local mesh regularity. One possible solution to this problem is to use the residual
from the least-squares problem as a smoothness measure, turning off the limiter on this basis much as we currently do when
the solution is flat; such a fix might well subsume our current approach to flat regions and wall effects. Second, there may be
situations in which elimination of the highest order terms would enforce monotonicity without requiring changes to other
terms. This would be desirable from the point of view of accuracy, although we have not investigated whether such situa-
tions are common or exceedingly rare.

Although the present work presents only inviscid results in two dimensions, the extension to viscous flows and three
dimensions should be relatively simple. Specifically, for viscous flows the stagnation region fix should be sufficient in elim-
inating the effect of the limiter near walls making the wall ghost value fix unnecessary. For three-dimensional inviscid flows
the wall ghost value fix will need to account for streamline curvature even though streamlines will not be coordinate aligned.
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